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Existence and a partial characterization of perfect splines of minimum norm,
related to totally positive kernels, are obtained by a unified method applicable to
the class of monotone norms (norms for which If(x)I';;; Ig(x)1 implies Ilfll ,;;; II gil)·
The method is based on the duality between this problem and best L '.
approximation, which provides a pointwise improvement theorem for perfect
splines. Similar results are obtained for norms induced by inner products by the
equivalence between this case and the self-dual case of perfect splines of minimum
L '-norm. The knots and zeros of the minimal perfect splines are then used in
choosing best tensor-product approximations to totally positive kernels in a norm
which is a tensor product of a monotone norm and the L '-norm. Also n-widths and
optimal spaces in the sense of Kolmogorov and Gelfand are obtained for integral
operators with totally positive kernels via the minimal perfect splines. These results
generalize known results for the LP-norms, J ';;;p';;; 00, to monotone norms and to
norms induced by inner products.

1. INTRODUCTION

Perfect splines of minimum norm are of central importance in the theory
of n-width for classes of functions related to integral operators with totally
positive (TP) kernels, and also in optimal tensor product approximations to
such kernels.

Given a TP kernel K(x,y) E C([a, b] X [e, dj), a perfect spline with knots
C=Yo <YI < ... <Yn <Yn+1 =d is defined as

d

~ix) = i. K(x,y) hiY) dy,

(Ll )
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Existence of perfect splines of minimum LP-norms, 1 <,p < 00, leading to
various n-width results, is proved in [12] for TP kernels satisfying certain
additional assumptions on the independence of their sections. Also optimal
tensor product approximations to the kernel K in norms of the form

l l d JP Jlip111/(x,Y)111 = I Ie I/(x,Y)1 dy dx (1.2)

are obtained in [12]. The case p = 00 is investigated in [11].
The present work provides a unified method for the derivation of the

existence and a characterization of perfect splines of minimum norm. The
method we use is independent of the explicit form of the norm and applies to
the wide class of monotone norms (norms for which III <, Igl on [a, b]
implies 11/11<, II gil). Consequently also n-widths results and tensor product
optimal approximations to bivariate functions are obtained for monotone
norms.

Our method of proof is based on the duality between the problem of
perfect splines of minimum norm and best L I approximation. This duality is
the key to an "improvement theorem" for perfect splines, in analogy to
known "improvement theorems" for monosplines [6,15]. The knots of the
perfect spline of minimum norm are characterized as a fixed point in R n of
an "improving" transformation, based on the canonical points for best L I

approximation by weak Chebyshev systems [10 I. This transformation is
used in [2] to prove the uniqueness of perfect splines of minimum L I-norm
for a certain class of kernels.

For extended TP kernels this approach yields the existence and a charac­
terization of perfect splines of minimum norm for all monotone norms. For
TP kernels such results are obtained only for various subclasses of monotone
norms, depending on the smoothness and the independence of the sections
K(.,y), K(x, .) of the kernels. In particular it is shown that for a certain
subclass of monotone norms containing the LP-norms, 1 <,p < 00, the
present method of proof requires weaker assumptions on the kernels than
those needed for the proof in [12].

The self-dual case of perfect splines of minimum L I-norm related to
symmetric kernels, with its specific structure, provides a tool in the analysis
of perfect splines of minimum norm for norms induced by inner products.
The latter case is proved to be equivalent to the former under certain
conditions on the kernel and the inner product.

The results on perfect splines of minimum norm and the ideas in the
proofs are analogous to those in [15] dealing with monosplines of minimum
norm corresponding to extended TP kernels. The central role of best one­
sided L I-approximation in the analysis of the monospline case is replaced by
best two-sided L I-approximation in the present analysis.
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In Section 2 we introduce the main concepts and notations, cite several
results, and derive the correspondence between the properties of the kernel
and the set of monotone norms for which the forthcoming analysis applies.
In Section 3 we obtain the existence and a characterization of the minimal
perfect splines for monotone norms, .and also the specific structure of the
self-dual case corresponding to the L I-norm. Using this structure we
investigate in Section 4 perfect splines of minimum norm for norms induced
by inner products.

The results of Section 3 are used in Section 5 in the derivation of best
tensor product approximations I:7= I u;(x)vj(y) to TP kernels K(x,y) in
norms of the form

III!III == !If 1!(·,y)1 h(y) dy II,

where 11·11 is a monotone norm, and h ~ 0, hE L co [e, d].
Also in this section n-widths of Kolmogorov and Gelfand type are

computed via the results of Section 3 and 4 for two classes of functions,

K h = IfK(x,y)a(y)dYlaELCO[c,d], la(y)l~h(y),yE [e,d l !,

K x = lr K(x,y)g(y)dylgEX,llgll~ l},

where Xc L I Ie, d] is normed by a monotone norm 11·11.
For the class K h under the assumptions of Section 3, we obtain the two

types of n-widths, with respect to monotone norms by a method similar to
that in [121. For the Kolmogorov n-width the extra assumption of strict
convexity of the monotone norm is required. Without this assumption on the
monotone norm, the n-width of Kolmogorov type is obtained only for the
restricted set of approximiting functions {K(·,y) Iy E (c, d)}. This is done by
the characterization of perfect splines of minimum norm as minimal
functions from the wider class of functions

Both types of n-widths are found to equal the norm of the minimal perfect
splines and the corresponding optimal spaces are related either to the set of
knots or the set of zeros of a minimal perfect spline. Similar n-width results
for the class K h are obtained, under the assumptions of Section 4, for inner
product norms. Results on the n-width of the image of the unit ball in inner
product spaces are well known (see, e.g., 19] and references therein). The
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results here for the class K h are new and extend those known for the L 2_

norm [12].
For the class K x the n-widths are computed with respect to the L '-norm

by introducing a dual norm to that defining K x ' The results in this case are
dual to those in the previous case: the roles of the Kolmogorov and Gelfand
n-width are interchanged, and the n-widths and optimal spaces are related to
perfect splines corresponding to the kernel K T

, which are minimal with
respect to the dual norm.

2. NOTATIONS AND PRELIMINARY RESULTS

In this section we introduce several concepts and notations, cite three
results, and derive several preliminary results necessary for the proof of the
existence and characterization of perfect splines of minimum norm.

A central concept to this work is that of totally positive kernels 15].

DEFINITION 2.1. A kernel K(x,y) E C([a, b] X Ie, d]) is termed totally
positive (TP) if for any x = (a <XI'" < x n<b), y = (e <y, < ... <Yn <d),
n ~ I,

~o. (2.1 )

If in (2.1) there is strict inequality for all choices of x and y as above, the
kernel is termed strictly totally positive (STP).

Any n functions of the form {K(x,yJ,i= 1,... ,n} or {K(x;,y), i= 1,...,nl
constitute a weak Chebyshev system if K is TP and a Chebyshev system if K
is STP [5].

DEFINITION 2.2. A system of functions U= {u" ... , un} IS a weak
Chebyshev system on [a, b] if U c C[a, b] and

~o (2.2)

for any a <XI < ... <x n <b. The system U is termed a Chebyshev system if
there is always strict inequality in (2.2). The dimension of U is the
dimension of the span of the functions in U.

For U= {up..., un} a weak Chebyshev system, C±(U) denotes the cone of
functions {f} such that {u I'"'' un' ef} is also a weak Chebyshev system for
e = ± 1, C(U) = C + (U) u C - (U).
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For KEC·O([a,b] X [c,d]) and for x=(a~xl~",~xm~b) with no
more than r + I repetitions of the same point and for
y =,(c <Yl < ... <Yn <d), we introduce the following notations:

(i) The matrix

with
Ii = max{v IXi _" = Xi}'

(2.3 )

(2.4 )

A kernel K is termed ETP of degree r + I in X on la, b] X (e, d) if deter­
minants (2.3) are positive.

(ii) The two systems of functions

K(y) = {K(x,YJ,i= I, ...,n~,

Iai
; I

K[x] = lax
'
; K(xi,y), i = I,..., m \'

(2.5)

(2.6)

which are weak Chebyshev systems in case K is TP IS].
Following [12] we introduce the concept of nondegeneracy of a kernel K.

Here we need a refinement of this concept with regard to multiplicities of
points.

DEFINITION 2.3. A set of points a ~ Xl ~ ... ~ Xn ~ b is termed to be of
order r if points in (a, b) are repeated at most r times and the endpoints
{a, b} at most once.

DEFINITION 2.4. A kernel K E C,S(la, b] X Ie, d]) is nondegenerate of
order r in X on (a, b) (on la, b]) if for any n> I and any
x = (a < Xl ~ ... ~ Xn < b), (x = (a ~ Xl ~ .. , ~ Xn ~ b)) of order r + I, the
dimension of K[ x] is n.

A similar definition holds for nondegeneracy in y. For the case of
nondegeneracy of order 0 in both variables on (a, b) X (e, d), this property is
weaker than the one in 112].

The technique used in the next section for the investigation of perfect
splines of minimum norm is independent of the particular nature of the norm
and is applicable to monotone norms defined by the property

f,gEC[a,b], If(x)1 ~ Ig(x)l, X E la, b] :::? Ilfll ~ II gil.

Norms for which Ilfll < II gII with f, g as above and fie g are termed "strictly
monotone." The LP-norms 1 ~p < 00 are strictly monotone.
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Best approximation by monotone norms are studied in [7, 8], where the
following two results are proved:

RESULT A [7]. Let II ·11 be a monotone norm defined on CIa, b] and let
J, g E Cra, b] satisfy If(x)/ ~ /g(x)/, x[a, b], with equality only at the zeros of
g. Then Ilfll < II gil whenever g i; 0.

RESULT B [8]. Let {up...,unlcCla,b] be such that {up...,unl and
{u1, ...,un-d are Chebyshev systems on [a,b] and let u* be a best approx­
imation to f E Cla, b] from the span of {u I .... , Un I in a monotone norm. If
f - u* has only isolated zeros in [a, b], then

- *Zra,bl(f- u ) >n,

where Z[a.bJ(f) denotes the number of isolated zeros off in [a, b], counting
twice zeros in (a. b) where f does not change sign.

This count of zeros in case of general monotone norms requires in the
forthcoming study of perfect splines of minimum norm a finer analysis than
that needed for the LP-norms, I ~p ~ 00, for which Z in the above result
can be replaced by the number of simple zeros in (a, b).

For ease of formulation we refer in the following to a system of functions
and to its span by the same symbol. The following result is concerned with
best approximation in the L I-norm by weak Chebyshev systems:

RESULT C [10]. Let U={up...,unlcCla,b] be a weak Chebyshev
system of dimension n on [a, b] such that for every a <x I < ... <X n < b

Then for any g(x) >0, meas {x Ig(x) =01 = 0, there exists a unique set of
points a = to < t l < ... < t n < t n+1= b with the property

f (-I)if+' uix)g(x)dx= 0.
j=O Ti

For this set of points

j= 1,.... n, (2.7)

(2.8)

and the best approximation to any fE qU) from U in the L~-norm

b b

Ilf-u*lll.g=f If-u*lg= inff If-ulg
a UEU a

is the unique interpolant to f from U at the points t I .... , tn'
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Remark 2.1. For K(x,y)TP on [a,bl X [c,d] and nondegenerate of
order °in y on (c, d), and for any a ~ x\ ~ ... ~ x n ~ b such that K[x] is a
weak Chebyshev system of dimension n, the system K[x] satisfies the
assumptions of Result C. To see this, observe that K(x, .) E C(K[x]) for
x E (a, b), and that for any c < Y. < ... < Yn < d

span{(K(x,y\),..., K(x,Yn)) Ix E (a, b)} = R n

by the nondegeneracy of Kin yon (c, d).

In Lemmas 2.1 and 2.2 we assume that K E Cr.O([a, b] X [c, d]) is a TP
kernel, nondegenerate of order r in x on (a, b) and of order °in yon (c, d).

LEMMA 2.1. Let

d

¢y(x) = f K(x,y)f(y) dy,
e

where fE L 00 [c, d] satisfies (_I)i f(y) ~ 0, Yi < Y < Yi + l' i = 0,..., n, for
c = Yo < Y. < ... < Yn < Yn+ 1 = d. Then ¢y E C(K(y)). Moreover if
meas {y !f(Y) = o} = 0, then any function of the form

n

u(x; y, a) == ¢y(x) + L aiK(x'Yi)
i=l

(2.9)

has at most n zeros in (a, b) counting multiplicities up to order r + 1.

This lemma can be proved by the method used for the case r = °in [11,
Lemma 7.1]. As a direct conclusion we obtain

LEMMA 2.2. Under all the assumptions of Lemma 2.1, the set of zeros
a <Xl ~ x 2 ~ ••• ~ XI <b, with multiplicities counted up to order r + 1, of
any function ofform (2.9), has the property that I~ nand

(2.10)

Moreover, if I = n, then for any X E (a, b) - {x. ,..., xnf

sgn[u(x; y, a)] = (_I)ilXl, where i(x)=max{ilxi<x}, xo=a. (2.11)

Proof. Assume to the contrary that for a function v of form (2.9) with
zeros a < Xl ~ Xl ~ .•. ~ XI < b there exists m < I such that

k K (
Xi" ••• , Xi ) k (x\' ...,XI )ran m = m = ran K ,
Yl'···'Yn Y.'···'Yn

(2.12)
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and choose a <';1 < ... < ';n-m < b to satisfy {';p.", ';n-m} c (a, b)­
{x, ,..., Xl}' and

det K (Xi, ,..., Xim ' .;\ ,,,., ';n~m ) *O.

YI'''''Yn
(2.13)

This choice is possible by (2.12) and the assumptions on the
nondegeneracy of K.

In view of (2.13) there exists uEK(y) interpolating v at xi"""Xim '
';1'''·,';n-m' This u vanishes at xi",,,,Xim and by (2.12) also at xl'''''x/, and
therefore u interpolates v at xl'... ,xp ';1""'';n-m' Thus v-u, which is also
of form (2.9), has n - m + I > n zeros, counting multiplicities up to order
r + 1, in contradiction to Lemma 2.1.

Now if 1= n, then by (2.10)

"d (x\,,,.,Xn )
LJ = etK * 0,

YI'''''Yn

and

( . )-~d t (~y,K("YI),,,.,K("Yn))u x, y, a - e
L1 x, XI'"'' x n

1 Jdd (X,x"""Xn)f()=- etK Y dy,
L1 c Y'YI""'Yn

proving (2.11). I
Remark 2.2. Under the stronger assumption that K is also

nondegenerate of order r in X on the closed interval [a, b], and/or of order 0
in yon [c, d], Lemmas 2.1,2.2. hold for zeros a <Xl <... <xn <b of order
r+ 1 in [a,b], and/or for C<YI < ... <Yn<d.

A direct consequence of Result B, Lemma 2.2, and Remark 2.2 is

COROLLARY 2.1. Let KE CI.O([a,bj X [c,d]) be STP and non­
degenerate of order 1 in X on [a, b ], and let ~ y be defined as in Lemma 2.1.
Then any best approximation u* to ~y from K(y) in any monotone norm
satisfies

(2.14)

Moreover, the zeros a < ';1 <... <';n <b counted in (2.14) satisfy

detK (';l, ... ,';n )*0.
YI'''''Yn
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This property of the best approximation to the perfect spline ~Y' expressed
in the last corollary, is essential in the analysis of perfect splines of minimum
norm. Since such a property cannot be stated for all TP kernels and all
monotone norms, in the absence of an analogous result to Result B for weak
Chebyshev systems, we associate an appropriate class of norms to each TP
kernel.

DEFINITION 2.5. For a given TP kernel K(x,y) E Cr.O([a, b] X [c, d]),
the class of norms N(K) consists of all the monotone norms with the
property: For any c <Yl < ... <Yn < d such that K(y) is of dimension n,
there exists a best approximation v* to ~y from K (y) such that ~ y - v* has n
zeroes a ~ ¢l ~ ... ~ ¢n ~ b of order r + 1 satisfying

det K (¢l ,..., ¢n ) * O.
YI,oo"Yn

(2.15 )

Thus the class N(K) consists of all the monotone norms whenever K is
STP on [a,b] X [c,d], and nondegenerate of order 1 in x on [a,b]. Of
course this is also the case when K is extended totally positive.

Furthermore, this definition and Lemma 2.2. imply

COROLLARY 2.2. Let K E q[a, b] X [c, d]) be TP and nondegenerate of
order 0 in x and yon (a, b) and (c, d) respectively. Then N(K) contains all
the monotone norms of LP type, namely, the monotone norms with the
property that for any fE qa, b] and any weak Chebyshev system of
dimension n, U c qa, b], there exists a best approximation to f from U,
interpolating f at n distinct points in (a, b). In particular, N(K) contains all
the LP-norms, 1~p ~ 00.

It is possible to prove that for TP kernels in CI.O([a, b] X [c, d]) which are
nondegenerate of order 1 in x on [a, b] and of order 0 in yon (c, d), the class
N(K) contains the wide class of decomposable monotone norms. These are
norms with the property that for any m >0 disjoint open intervals in (a, b),
Ipoo.,Im' it is possible to find points, a = X o < XI < ... <X n < x n + 1= b.
n>m + 1, containing all the boundary points of II '00" 1m , such that

(2.16)

In (2.16) N n.• is a monotone norm defined on R n+ 1 and Ilfll,xj,xi,d is a
monotone norm of the restriction of fto [Xi' x i + 1 J.

An example of decomposable monotone norms is furnished by norms of
the following type:
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[

S ] l/q

IIIII = i~O (1l/llpl ' (2.17)

where 1 ~Po,...,PS' q ~ 00, and a = ~O < ~I < ... < ~s < ~s+ 1 = b are fixed.
For decomposable monotone norms a weaker version of Result B holds in

the context of best approximation by weak Chebyshev systems. This will be
shown elsewhere.

In the following section we derive the results for monotone norms in the
class N(K) by a unified method independent of the particular form of the
norm. For the LP-norms 1~p < 00, this method of proof applies to the class
of TP kernels satisfying the assumptions of Corollary 2.2 which is wider
than the class considered in [12].

3. EXISTENCE AND CHARACTERIZATION OF PERFECT SPLINES OF

MINIMUM MONOTONE NORM

Let K E Cr.O([a, b] X [c, d]), r ~ 0, be a TP kernel nondegenerate of order
o in Y on (c, d) and of order r in x on (a, b) or [a, b], and let hE L CO[c, d]
satisfy

h~O on [c,d],

For any y in the n simplex

measlY I h(y) = O} = o. (3.1 )

sn == sn[c, d] == {T\ Ic = 110 < 111 < ... < I1n< I1n+ 1= d} (3.2)

we define the function

hiY) = (-Iy h(y),

and the corresponding perfect spline

Yj <Y <Yj+ 1 , j = 0,... , n, (3.3)

d

~y = J K(·,y) hiY) dy.
e

The function

F(y) == F(YI ,... ,Yn) = II~yll,

(3.4)

(3.5)

for 11·11 a monotone norm, is a continuous function of y in sn, by the
continuity of the norm 11·11 and by the continuous dependence of ~y on y in
sn. The function F(y) can be extended continuously to the closure of sn

(3.6)

according to the following definition:
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where z E S\ k ~ n, and z, ,..., Z k are those points among y, ,..., y" which are
interior to /C, d] and appear with odd multiplicities. Hence there exists
y* E Sm, m ~ n, satisfying

for all y E Sk, k ~ n. (3.8)

In the following we restrict the discussion to monotone norms in the class
N(K), and show that a point y* E sm, m ~ n, satisfied (3.8) only if y* E S".
A new characterization of such y* is also given.

LEMMA 3.1. Let c ~ Z1 < ... <Zk~ d, and let a ~ ~, ~ '" ~ ~k ~ b be of
order r + 1 and satisfy

L1 == det K (~l , ,~k ) > O.
Z, , , Zk

Denote by v E K(z) the unique interpolant to ~z at ~ = (~, ,..., ~k)

(3.9)

Ii = max{v I~i-" = ~il, i = I,..., k.

Then if k < n or if k = n and v '* 0, there exists a perfect spline ~Y' yES",
satisfying

l~ix)1 ~ I~z(x) - v(x)l, xE [a,b], (3.10)

Moreover in the following two cases:

(i) K is ETP of degree r + 1 in x on [a, b],

(ii) K is STP on (a, b) X (c, d) and a <~, < ... <~" <b, (3.10) holds
with equality only at the zeros of ~z - v.

Proof If k <n choose ~k+ 1'"".,~" such that ~ = (~1'..., ~") E S" [a, b] and
dimension K[~] = n. This is possible by the nondegeneracy of K in x on
(a, b). In case k = n, obviously ~ =~. By (3.9)

I~z(x) - v(x)1 =~ det (~z, K(., Z,), , K(·, Zd)
Ll x, ~" , ~k

=~ IJd

detK (y,Z"""Zk) hz(y)dyj
L1 c X'~l""'~k

=~ (ldetK (y,ZI"",Zk) Ih(y)dy
Ll c X'~l""'~k

=IIK(x,y)-uxCy)II,.h~O, (3.11)
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where Ux is the unique function in K[~] interpolating K(x,.) at
z = (z 1"'" Zk)' Hence there is equality in (3.11) if and only if K(x, .) E K[~].

Since K[~J is a weak Chebyshev system of dimension n, Result C guarantees
the existence of y E sn such that

df u(y) hy(Y) dy = 0,
r

or equivalently the perfect spline ~y satisfies

u E K[~J, (3.12)

i = 1,... , n. (3.13 )

Obviously in case k < n, y * z. If k = n and v i= 0, the uniqueness of the
function v E K(z) interpolating ~z at ¢l ,..., ¢n implies that y * z, as u == °
interpolates ~y at ~.

Furthermore, Result C implies that for any x E [a, b] the function
u; E K[~], interpolating K(x, .) E C(K[¢]) at Yl ,...,Yn , satisfies

IIK(x, .) - u; Ill.h ~ IIK(x, .) - uxlll.h (3.14)

with equality if and only if K(x, . ) E K[~], namely at the zeros of ~z - v. But
by the definition of u; and by (3.12)

which in view of (3.14) and (3.11) completes the proof of (3.10).
In the special cases (i), (ii) u; * Ux whenever K(x, .) - Ux i= 0, since this

function can have no more than its k zeros at z, while K(x, . ) - u; vanishes
at y * z. Hence there is equality in (3.14) and therefore in (3.1O) if and only
if K(x, .) E K[~], namely at the zeros of ~z - v. I

THEOREM 3.1a (An improvement theorem for perfect splines). Let
c < Z 1 < ... < Z k < d, k ~ n, be such that either k < n, or k = n and v == °is
not a best approximation to ~z from K(z). Then there exists n points
c <Y\ < ... <Yn < d with the property

(3.16)

whenever K is TP and nondegenerate of order 1 in x on [a, b] and of order °
in Y on (c, d] (or [c, d)) and the norm 11·11 is in N(K).
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Proof In case zero is not a best approximation to ~z from K(z), let vi 0
be such a best approximation. Then

II~z - vii < II~zll (3.17)

and v satisfies the assumptions of Lemma 3.1 since 11·11 E N(K). The case
that zero is a best approximation to ~z from K(z) occurs only for k < n by
the assumptions of the theorem. In this case let v denote a best approx­
imation to ~z from the subspace K(z)UK(.,d) (or K(z)UK(.,c)) which is
of dimension k + 1~ n. Necessarily vi 0, since 11·11 E N(K) and therefore
~z - v has k + 1 zeros of order r + 1 in [a, b], while by Remark 2.2, ~z has
at most k zeros of order r + 1 in [a, b]. Hence (3.17) holds for this v as well,
and v satisfies the conditions of Lemma 3.1. Hence Lemma 3.1 guarantees
the exi,stence of points c <Yl < ... <Yn <d such that

xE [a,bl.

By the monotonicity of the norm we finally obtain

II~yll ~ II~z - vii < II~zII· I (3.18 )

The requirements on the nondegeneracy of K, involving the boundaries of the
intervals, can be relaxed, if either the kernel or the norm have more structure.

THEOREM 3.1 b. The improvement result of Theorem 3.1 a is also valid in
the following cases:

(i) K is TP and nondegenerate of order 0 in x on (a, b) and in Y on
(c, d] or [c, d), and the norm 11·11 is ofU type.

(ii) K is TP and nondegenerate of order 0 in x on (a, b) and in Y on
(c, d), and the norm 11·11 is strictly monotone of U type.

(iii) K is TP on [a, b] X (c, d) and the norm 11·11 E N(K) is strictly
monotone.

(iv) K is STP on (a, b) X (c, d) and the norm 11·11 is of U type.

(v) K is ETP of degree 2 in x on [a, b] X (c, d) and the norm 11-1I is
monotone.

Proof The proof of case (i) is the same as the proof of Theorem 3.la.
For all the rest of the cases the improvement result as expressed by (3.16) is
due to a strict inequality in the first rather than the second inequality in
(3.18). Let v be a best approximation to ~z from K(z). Then v satisfies the
requirements of Lemma 3.1: in case (v) by Result B in cases (iii), (iv) by the

640/38/2-2
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structure of the norm and in cases (ii) by the structure of the norm and by
Lemma 2.2. For cases (iv), (v) Lemma 3.1 guarantees that

l~rCx)l::;;; I~z(x) - v(x)l, xE [a,b]

with equality only at the zeros of ~z - v. Hence by Result A

I\~yl\ < II¢z - vii ~ II¢zll·

For cases (ii), (iii) the strict inequality above follows from (3.10) and the
strict monotonicity of the norm. I

As a direct consequence of Theorem 3.1 and its proof we obtain

THEOREM 3.2. Let ~y., y* E Sm, m ~ n, be a perfect spline of minimum
norm

II~y·11 ~ II~yll, Y E sk, k ~ n. (3.19)

Then under the assumptions of Theorem 3.1 m = n,

c <y~ < ... <y: < d,

and

Moreover ~y' has property (3.19) if and only if

(3.20)

(3.21 )

II ~y·11 ~ II~y - tl a;K(x, y;) Ii, (3.22)

Remark 3.1. An improvement theorem, as Theorem 3.1, can be obtained
for positive perfect splines if v * in (3.17) is replaced by a best approximation
{} E K(z) to ~z from below. This re~ult holds for monotone norms in the class
N+ (K) defined as N(K) in Definition 2.5 but with regard to best approx­
imation from below. Consequently, an analogous result to Theorem 3.2 for
positive perfect splines holds, namely, any positive perfect spline of minimum
norm ~y' corresponds to y* E sn and satisfies

lI~y·1I ~ lI~y - ull, uEK(y), ¢y-U~O, yES\ k~n,

with equality only if u== 0 and y E sn.
Property (3.21) of perfect splines of minimum norm yields in the case of



PERFECT SPLINES 119

the sup-norm the existence of exactly n + I points of alternation of ¢y., a ~
Xo< ... <x n ~ b:

i=O,..., n, (3.23 )

since u = °is the best approximation to ¢y. from K(y*). Property (3.23) of
¢y. implies that u = °is also a best approximation in the sup-norm to ¢y.
from K(y) for all y E sm, m~ n (see also [13 J).

The results of Theorems 3.1 and 3.2 for the U-norms, 1~p <00, apply in
view of Corollary 2.2 to all TP kernels which are nondegenerate of order °
in x and y on (a, b) and (c, d), respectively. The rest of this section is
concerned with such kernels and with the specific structure of perfect splines
of minimum L;-norm, with g satisfying

gELOO[a,b], g(x) ~ 0, xE [a,b],
..
meas{x Ig(x) = O} = 0. (3.24)

THEOREM 3.3. Let ¢y.for y* E sn satisfy

for any y E Sk[C, d], k ~ n. (3.25)

Then there exist n points a = xt <x~ < ... <x:+ 1= b such that

sgn[¢y.(x)j = sgn[g•• (x)j,

where

g•. (x) = (-I)j g(x),

Moreover, the perfect spline

xE [a,b]- {xt, ... ,x:f,

x/ <x <x/+ I , j = 0,..., n.

(3.26)

(3.27)

b

'II•• (y) = f K(x,y)g•. (x)dx
a

satisfies

(3.28)

sgn['II•• (y)]=sgn[hy'(y)], yE[c,dj-{yt,...,y:}, (3.29)

11'II•• lll,h=ll¢y.lIl,g~II'11.III.h' xESk[a,b], k~n. (3.30)

Proof. By Theorem 3.2, zero is the best approximation to ¢y. from K(y*)
in the L;-norm. In view of Result C, there exist n points x* = (xt, ..., xn E
S n [a, b] with the property

bf K(x,yng.·(x) dx = 0,
a

i= 1,... , n, (3.31 )
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and ~y' vanishes at these points, each being a simple zero. This proves
(3.26). In terms of the perfect spline (3.28), relations (3.31) are

i = 1,..., n.

This together with Lemma 2.2 implies (3.29), and therefore

d d b

II II'x·II I,h= f II'x.(y)hy.(y)dY=f f K(x,y)gx'(x) hy.(y)dxdy. (3.32)
c c a

Similarly, by (3.26)
b b d

II~y·lll.g= f ~y.(x)gx·(x)dx= f f K(x,y)gx'(Y) hy'(x) dy dx. (3.33)
a a c

Thus IllI'x.III,h=ll~y.III,g' To complete the proof of (3.30) we use the
symmetry between the two problems:

min II~ylll,g;yeSm[c,dj
m<n

min IllI'xlll h'
xeSm[a,b] ,

m<n

By the first part of (3.30) applied to the second problem,

111I'~·III,h =: xe~\~,blllll'xlll,h = 11~'l·III,g,
m<n

and therefore

II ~y·III,g = II II'x'III.h ~ 111I'~·III.h = II ~'l·III.g ~ II~y·111.g,

implying the second part of (3.30). I
In [2] it is proved that (3.21) for the L;-norm is a necessary and sufficient

condition for (3.25) and that the point y* E sn[c, d] is unique for special
choices of K, g, h.

The case K(x,y) = K(y, x), [c,d]= [a,b], and g(x)=:h(x) has a specific
self-dual structure:

THEOREM 3.4. Let K(x,y)=K(y,x) on [a,b]2 and let

hELOO[a,b], h ~ 0, meas{x Ihex) = O} = O. (3.34)

Then for any perfect spline ~y. = f~ K(·,y) hy'(y) dy ofminimum Lh-norm the
set of knots y * coincides with the set of zeros:

sgn [[ K(x,y) hy'(y) dy ] = sgn[hy'(x)], xE [a,b] - {yt, ... ,Yn*}·

(3.35)
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Proof By Theorem 3.3 and the symmetry of K(x,y), there exists
x* E Sn[a, b] such that

sgn [( K(x,y) hy.(Y) dy ] = sgn[h••(x)],

sgn [( K(x,y) h•• (y) dy ] = sgn[hy'(x)],

xE [a,b] - {xi, ... , x:},

(3.36)

xE [a,b] - {Yi, ... ,Y:I.

(3.37)

We shall prove that x* = y *. Assume to the contrary that x* *' y *, and
introduce the bilinear form

b b

[f,e] = f f K(x,y)j(x) e(y) dx dy.
a a

(3.38)

This bilinear form is a semi-inner product since K(x,y) is symmetric and TP,
and therefore the Schwarz inequality holds,

If, ep ~ [f,j][e, e].

On the other hand, by (3.36), (3.37), and the assumption x* *' y.,

(3.39)

f: U: K(x,y) hy.(Y) dy ] h•• (x) dx >f U: K(x,y) hy.(Y) dy ] hy'(x) dx,

( U: K(x,y)h".(y)dy ] hy.(x)dx > ( U: K(X,y)h ••(y)dY ] h•• (x)dx,

which in terms of the semi-inner product (3.38) become

in contradiction to (3.39). Therefore x* = y * and the proof of the theorem
is completed. I

The result in Theorem 3.4 is of central importance in the derivation of
existence and characterization of perfect splines of minimum norm for norms
induced by inner products.

Remark 3.2. The results of this section can be extended to perfect
splines of the more general form

(3.40)
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with Kix,y) = (fY/8yi)K(x,y), under the assumptions that K r+1(·' c) E
C[a, bland {Kix, c), j = 0,..., r + l} U K(y) is of dimension n + r + 2 for
any yES". This from with K(x,y) = (x - y)~+ I, h == 1, c = 0, corresponds
to the classical algebraic perfect splines

r+1 r+2 " ( )r+2
'\'a.xi + x +2\'(_1)ix-xi+.
i":"O I (r + 2) t;;1 (r + 2)

(3.41 )

The minimal perfect spline of form (3.40) can be characterized by an
improvement theorem as Theorem 3.1. This requires two simple
modifications in the proof of Theorem 3.1:

(a) The weak Chebyshev system K(z) is replaced by the weak
Chebyshev system

K(c U z) == {K(x, Zi)' i = 1,... , k, Kix, c), j = 0,..., r + I}. (3.42)

(b) If ~Esk+r+2[a,b] is the vector of zeroes of ¢z-v*, then in
Lemma 3.1 yES" [c, d] are the canonical points of Result C for the weak
Chebyshev space of dimension n, consisting of those functions in K[~ I,
~ E S" +r+ 2 [a, b] (~c ~), which have a zero of multiplicity r + 2 in c.

4. PERFECT SPLINES OF MINIMUM NORM FOR

NORMS INDUCED BY INNER PRODUCTS

For a given inner product ( , ), real or complex, defined on functions with
domain D 1 , we consider perfect splines of minimum norm for the norm

IIfl1 2 = (f,f). (4.1 )

These perfect splines are related to perfect splines of minimum Lh-norm if
the following conditions hold:

(i) K(z, y) is defined on a domain D 1 X D 2 , where D 2 contains a real
interval [a, b ].

(ii) Any perfect spline

¢y(z) = ( K(z,y) hiY) dy,
a

with h satisfying (3.34), has a finite norm.

(iii) The kernel

(4.2)

G(x,y) = (K(., x), K(.,y)) (4.3 )
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is real, continuous, totally positive on [a, b 12, and nondegenerate of order 0
in x and in yon (a, b)2.

Under these assumptions

G(x,y) = G(y, x), x, Y E [a, b j,

b

(~y,K(.,x))= f G(x,y) h/y)dy= qJ/x),
a

.b

(~y, ~x) = J qJ/x) h.(x) dx.
a

(4.4 )

(4.5 )

(4.6)

An example of kernels K and inner products ( , ) satisfying assumptions
(i}-(iii) is furnished by the complex-valued kernels (l-z()-J, (1-z()-2
defined on Izl < 1, 1'1 < 1, and the corresponding inner products /14]:

(f, g) = J fez) g(z) ds,
Izi ~ 1

(f, g) = J fez) g(z) dx dy.
Izl< I

LEMMA 4.1. Let u(z)=L:7_JaiK(Z,Yi)' yESk[a,bj, k<,n, be a best
approximation to ~y in the norm (4.1) from K(y). Then

II~y- t ajK("Yi) 11

2

= Iitp/X)- ~ aiG(x,y;) II . (4.7)
I-I I-I I.h

Proof. As a best approximation from a finite-dimensional subspace in an
inner-product norm, u satisfies the normal equations

which in view of (4.3}-(4.5) become

k

tpy(Y) - I aiG(Yj'Yi) = 0,
i=J

Hence by Lemma 2.2

j= 1,... , k,

j= 1,..., k.

(4.8)

(4.9)

xE [a,bl- {Y .... ·,Yd·

(4.10)

Combining (4.8) with (4.10) and recalling (4.5) and (4.6), we obtain
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I/¢y - it) aiK("Yi) 11

2

= (¢y - itl aiK("Yi)' ¢y)

= f: [<py(X)- it) aiG(x,YJ ] hy(x)dx = IlqJy- itl aiG(',YJIII.h· I

In the following, sn == sn la, b]. As an immediate consequence of Lemma
4.1 we obtain

LEMMA 4.2. Let qJy., y* E Sn, satisfy

(4.11 )

Then

Y E S\ k <. n. (4.12)

Proof By Lemma 4.1 and Theorem 3.2, for y E S\ k <. n,

where u is the best approximation to ¢y from K(y), and v = (u(z),
K(z, ·»EG(y). To complete the proof we show that IlqJy.lIl.h=ll¢y.11 2

• By
Theorem 3.4 applied to the kernel G(x, y)

and therefore in view of (4.6)

b

IlqJy·1I1.h= f <py.(x)hy.(x)dx=(¢y·,¢y·)=II¢y.11 2
• I

a

Lemma 4.2 implies the existence of ¢y. with y* E sn such that

Y E S\ k <. n. (4.13 )

The proof of the equivalence between the two problems

is completed in

min II¢yll;
yESk

k<:;n

mim II qJylll.h
yESk

k<:;n

(4.14 )

LEMMA 4.3. Let ¢y' with y* E sm, m <. n, satisfy (4.13). Then m = n
and <Py' satsifies (4.11).
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Proof Let u be the best approximation to fly' from K(y*), and let
v = (u(z), K(z, .)). Then by Lemmas 4.1 and 4.2

(4.15 )

where qJ'l' is a perfect spline of minimum L 1-norm. Recalling definition
(4.13) of fly" we conclude from (4.15) that Ilfly,II=llfl'l'II and that zero is a
best approximation to fly' from K(y*). Hence (4.15) becomes

which ocompletes the proof of the lemma, in view of Theorem 3.2 applied to
the second problem in (4.14). I

Combining the results obtained in the lemmas we have

THEOREM 4.1. There exists y * E sn such that

Y E sk, k ~ n. (4.16 )

A perfect spline fly. satisfies (4.16) ifand only ify* E sn and

k

YE sk, ~ a~ > 0, k ~ n.
i~ I

In particular, zero is the unique best approximation to fly' from K(y *).
Moreover, fly' satisfies (4.16) if and only if qJy. is a perfect spline of

minimum L1-norm, and II fly· 11
2 = IlqJy.lll.h'

For the case h == 1 and G(x, y) = G(x - y), uniqueness of the perfect spline
of minimum L1-norm is proved in [2]. From the equivalence between the
problems (4.14), uniqueness of the perfect spline of minimum norm for
norms of form (4.1) follows for a certain class of kernels K(x, y) [21.

5. ApPLICATIONS TO ApPROXIMATION OF

BIVARIATE FUNCTIONS AND TO n-WIDTHS

The knots yt,... ,y: and zeros xt,... , x: of the perfect spline of minimum
norm play an important role in certain best approximation problems of TP
kernels and in n-width problems related to these kernels. This is done in [121
for the LP-norms, and in [11] for the sup-norm. Here we derive analogous
results for monotone norms in the class N(K), and for norms induced by
inner products using similar ideas as in [12]. Two results playa central role
in these derivations.
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THE HOBBy-RICE THEOREM [3]. Let ul, ... ,unEL1[a,bj and let
h E L 00 [a, b] satisfy (3.34). Then there exists x E sm [a, b], m ~ n, such that

ru;(x) hx(x) dx = 0,
a

i = 1,..., n. (5.1 )

THE BERNSTEIN COMPARISON THEOREM. Let U = {UI ,..., un f c Cia, b I
be a weak Chebyshev system, and let (f ± g) E C+ (U). Then

inf Ilf- U II ~ inf II g - u II
UEU UEU

(5.2)

for any monotone norm 11·11.

This theorem was proved by Bernstein for polynomials and the sup-norm
II]. It was extended to monotone norms in [7] and to weak Chebyshev
systems in [13].

As a by-product from the proof of this theorem we obtain ([7, 131)

RESULT D. Let U c Cr[a, b] and f, g E CIa, b] satisfy the condtions as
above, and let x = (a ~ XI ~ ••. ~ x n~ b) be of order r + 1 such that

det (U I'"'' un ) > O.
xj,,,,,xn

Then for any monotone norm 11·11

Ilf- /.111 ~ II g - Ix gil,

(5.3 )

(5.4 )

where Ix is the operator of interpolation at x by functions from U.

For the special situation of perfect splines and monotone norms the last
two results imply

COROLLARY 5.1. Let KEC([a,b]x[c,d]) be TP, let hELCX[c,dj
satisfy (3.1), and let ¢y for y E sn [c, d] be defined by (3.4). Then for any
function of the form

d

¢ = f K(.,y) a(y) dy,
e

we have

la(y)l~h(y), c~y~d, aELoo[c,d], (5.5)

inf lI¢y-ull~ inf II¢-ull,
UEK(y) UEK(y)

(5.6)

(5.7)



PERFECT SPLINES 127

(5.8)

where I. is the interpolation operator by funtions from K (y) at a set ofpoints
X= (a~xl ~ ... ~xn~b) of order r+ 1 such that

detK (X1,...,Xn ) >o.
Yl'···'Yn

Proof It is enough to observe that (-1 Y¢y ± ¢ E C+ (K(y)). This follows
from Lemma 2.1 and the fact that hiY) ± a(y) alternates sign weakly at

Yl""'Yn' I
For forms induced by inner products, the relation, revealed in Lemma 4.1,

to approximation in the L~-norm yields

LEMMA 5.1. Under the assumptions of Section 4,

inf (¢y - u, ¢y - u) ~ inf (¢ - u, ¢ - u),
ueK(y) ueK(y)

for any y E sn and any

(5.9)

b

¢ = r K(·,y)a(y) dy,
'Q

la(y)l~h(y), a~y~b, aELOO[a,b]. (5.10)

Proof By Lemma 4.1 if u = L:7= I a;K(., y;) is the best approximation to
¢y from K(y), then

(¢y-U,¢y-u)=llqJy-vll l.h, qJy(Yj) = v(yJ, j= 1,... ,n,(5.11)

where qJy(x)=f~G(x,y)hy(y)dy, v(x)=L:7=la;G(x,y;), and G(x,y)=
G(y, x) is TP on la, b12

•

On the other hand, the best approximation u = L:7= I b;K(·,y;) to ¢ from
K(y) satisfies the normal equations (¢ - u, K(·, y;)) = 0, i = 1,... , n which are
equivalent to

i = 1,... ,n, (5.12)

where qJ = f~ G(·,y) a(y) dy and {} = L:7=1 b;G(·,yJ, Moreover,

b

(¢-u,¢-u)=(¢-u,¢)= f (qJ-{})ady~llqJ-{}III.h· (5.13)
Q

Applying Corollary 5.1 to the TP kernel G(x,y), the L~-norm, and the
perfect spline qJy, we conclude from (5.11), (5.12), (5.7), and (5.13) that

(¢-u,¢-u)~llqJ-{}lll.h~llqJy-vlll.h=(¢Y-U,¢y-u), (5.14)

which completes the proof of the lemma. I
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Another important result for certain n-width problems is

RESULT E [12]. Let X be a space offunctions defined on [a, b ], normed
with a strictly convex norm 11·11. If ¢y=f~K(.,y)hy(y)dYEXfor all
y E sn[c, d], then for any subspace of X of dimension n, Xn, there exists
TJ E sn [c, d] such that

5.1. Best Approximation of Bivariate TP Functions

The first theorem deals with best approximation of bivariate functions in
C( [a, b] X [c, d]) by tensor-product functions from X ® L h[c, d j in the
tensor-product norm, where X is a linear space of functions defined on [a, b],
normed with a monotone norm.

THEOREM 5.1. Let K(x,y)EC',O([a,b] X [c,dJ), hELCC[c,dj, and a
monotone norm 11·11 satisfy the assumptions of Theorem 3.1. Then a best
approximation to K(x,y) by functions of the form :L7=1 ui(x)v;(y)EX®
Lh[C, d] in the norm

is given by

III fill = lit If(·,Y)1 hey) dy II (5.15)

n n

2.: L cijK(xj*,y)· K(x,y/)
;= I j= I

(5.16)

=K(x,y)- [detK (x,x~'''''x: )!detK (X~,oo.,x: ) J,
Y'YI, ..·,Yn YI,oo"Yn

where c <yi < ... <Y: <d and a ~ xi ~ ... ~ x: ~ b are the knots and
zeros of a perfect spline of minimum norm 11·11.

Proof Given a function of the form :L7= I UiV i E X ® Lh[C, d], we obtain

( IK(X,Y) - it) u;(x) vj(y) Ihey) dy

> II: [K(X,y) - jt) uj(x) v;(y) ] h'l(Y) dy I
=1¢'l(x)l, xE [a,b],

where h'l' TJ E R m [c, d], m ~ n, is an orthogonal function to v I , ... , Vn
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guaranteed by the Hobby-Rice Theorem. Hence by the monotonicity of the
norm 11·11 and by the definition of y* and x*,

IIIK(X,Y) - itl uj(x) vj(y) III

~11¢1JII~II¢y·ll= II(K(·,y)hy'(Y)dy II

= IIId

[detK (x,x~,...,x: )!detK (X~'.",x:)]hy.(Y)dyll
c Y'Yl'''''Yn Yl'''''Yn

= IIIK(X,Y) - .~ eijK(xi*,y) K(x,y/) III· I
l.}-l I

The rest of this section is devoted to various aspects of n-widths.

5.2. On n-Widths Related to Monotone Norms

We assume in this subsection that K, h, and the monotone norm 11·11
satisfy the assumptions of Theorem 3.1 and we consider the class of
functions

K h= !(K(x,y) a(y) dy Ila(Y)I::;:; hey), Y E Ie, d], a E L cole, d]}. (5.17)

For this class we investigate two n-width problems; one related to the
collection of functions

K{(e,d)} = {K(·,y)lyE (e,d)} (5.18)

and the other related to all the functions in a space of functions X,
x::::) K{(e, d)}, normed with the monotone norm 11·11.

The Kolmogorov n-width for this setup is

dn(Kh,Y,II·II)= inf sup inf 11¢-ull,
XncY rPEKh UEX n

(5.19)

where Y is either K {(e, d)} or X, and X n is a space of dimension n spanned
by n functions from Y. A space X n attaining the infimum is called optimal.
Under the assumptions of Theorem 3.1 we obtain only the weaker n-width
dn(Kh,K{(e,d)},II·II). The result follows from property (3.22) of perfect
splines of minimum norm, which is stronger than property (3.19) of
minimality. If it is further assumed that the norm 11·11 is strictly convex, then
dn(Kh, X, 11·11) can be obtained using only property (3.19) and Result E, as is
done in [12] for the LP-norms.
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THEOREM 5.2. Let K, h, and 11·11 satisfy the assumptions of Theorem 3.1,
and let ¢y.be a perfect spline ofminimum norm. Then

(5.20)

and the space K(y*) is optimal.

Proof By Corollary 5.1

sup inf II~ - ull = inf II¢y - ull,
t/>eKh ueK(y) ueK(y)

while by (3.22) of Theorem 3.2

Y E Sn, (5.21)

Combining (5.21) with (5.22), we obtain (5.20) and the optimality of
K(y*). I

THEOREM 5.3. Let K, h, 11·11, and ~Y' be as in Theorem 5.2. If the norm
II ·11 is strictly convex, then

(5.23)

and the space K(y*) is optimal.

Proof Given X n eX, there esists by Result E, y E sm, m ~ n, such that

(5.24 )

Hence

(5.25)

while by (3.19), (3.21), and Corollary 5.1

sup inf II~-ull~ inf II~y.-ull=ll~y.II~II¢yll· (5.26)
t/>eKh ueK(y') ueK(y')

This completes the proof of the theorem. I
The conditions of the last theorem hold, in addition to the Lp-norms,

I <p < 00, also for norms of form (2.17) with I <PO,...,Pr' q < 00 and for
K E CI,O([a, b1X [c, d]), TP, and nondegenerate of order 1 in x on [a, b]
and of order 0 in y on (c, d).



PERFECT SPLINES 131

The Gelfand n-width for the class K h , the norm 11·11, and a set of linear
functionals F defined on K{(c, d)} is defined as

(5.27)

A space L*= {fl/;!= 0, Ii E L n' i = 1,..., n} attaining the infimum is called
optimal.

The Gelfand n-width is obtained under the more general situations of
Theorem 5.2 without any further restrictions on the norm.

THEOREM 5.4. Let K, h, and 11·11 satisfy the assumptions of Theorem
3.1, and let F be a set of linear functionals defined on K{(c, d)} and
containing Lx. = {lx" i = 1,... , n Ilxd= fU)(x;), j = 1 - sgn(x( - xi-I)}' with
a <: xt <: ... <: x: <, b the set of I zeros of order 2 of a perfect spline of
minimum norm ¢y•. Then

and the space L~. = {fl/x~ f = 0, i = 1,..., n} is optimal.
I

Proof For any L n E P, define Un = {IK(·,y) II E L n }. Then by the
Hobby-Rice theorem there exists y E sm, m <: n, such that

dJ u(y) hiY) dy = 0,
c

or equivalently ¢y E L *. Hence

(5.29)

while by (5.7) of Corollary 5.1

(5.30)

(5.31)

where Ix. is the interpolation operator from K(y*) at the points
a <: xt <: ... <: x: <: b. Combining (5.30) with (5.31) we obtain (5.28) and
the optimality of L;.. I

5.3. On n- Widths Related to Norms Induced by Inner Products

Similar results to the above can be obtained for norms induced by inner
products, in view of Theorem 4.1 and Lemma 5.1. For the Kolmogorov n­
width we have

THEOREM 5.5. Let K, the inner product (, ), and h satisfy the
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assumptions of Section 4, let ~y' be minimal, and let X be an inner-product
space with respect to ( , ) containing the set K{(c, d)}. Then for Kh= {¢ I¢ =
f~K(x,y)O'(y)dy, 100(y)l~h(y),yE [a,b], O'E L<XJ[a, b]} we have

(5.32)

and the space K(y*) is optimal.

Proof Since the norm (f,f)1 /2 is strictly convex, it follows from
Result E that for X nC X there exists ~y, y E Sn [a, b], such that

(5.33)

On the other hand, by Theorem 4.1 and Lemma 5.1

which together with (5.33) completes the proof of the theorem. I

The Gelfand n-width for this setup is obtained similarly to that for
monotone norms.

THEOREM 5.6. Let K, the inner product ( , ), h, X, and ¢y. be as in
Theorem 5.5, and let FE X* be the set of all linear functionals in X*
mapping {K(·, y) lyE [a, b]} into the reaIs. Then

dn(Kh, F, ( , )1 /2) = (¢y., ¢y.)1/2 (5.35)

and the space K(y*)-L == {II (f, g) = 0, g E K(y*)} is optimal.

Proof For LnEP the functions Un={IK("y)IIEL n} are real on
[a, b]. Hence there exists by the Hobby-Rice theorem y E sm [a, b] such that
hy is orthogonal to Un' or equivalently ¢y E L *' Applying Theorem 4.1, we
conclude that

(5.36)

Now by assumption (iii) of Section 4, the set of linear functionals {l(f) =
(f,K(·,y))JYE [a,b]} is in F, while for ¢EKhnK(y*)-L it follows from
Lemma 5.1 that

(5.37)

since the best approximation from K(y*) to any fE K(y*)-L is zero. The
claim of the theorem follows from (5.36) and (5.37). I
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5.4. On n-Widths Related to L~-norms for Classes Defined by Monotone
Norms

More n-widths results can be obtained from the duality between perfect
splines of minimum monotone norms and best approximations in the L 1_

norm which is revealed in the proof of Lemma 3.1. These results deal with
classes of the form

KX = !( K(x,y)~y)dylgEX,llgll<; l~, (5.38)

where Xc L 1 [c, d j is a linear space normed with the monotone norm II· II
and with n-widths of Kolmogorov and Gelfand type related to Lh-norms.

The class K h in Subsection 5.2 can be viewed according to (5.38) as K x
with X the space L co [c, dj normed with the monotone norm Ilfll == sUPc';;;x';;;d

If(x)/h(x)l. Thus there is an overlap between the results there and those
obtained hereafter.

In order to obtain these results, a dual norm to the monotone norm 11·11
has to be introduced.

LEMMA 5.2. Let X be a linear space of functions defined on [c, dj,
normed with a monotone norm 11·11. If C[c, dj eX eLI [c, dj and

fE X ~ IfIsgn( g) E X for any g E C[c, dj, (5.39)

then the norm

III gill == sup Irf(y) g(y) dy I
JEX C
Ilfll= 1

is monotone on C[c, dj.

(5.40)

Proof For u,vEC[c,dj such that lu(Y)I<;lv(Y)I, yE [c,dj, and for
IE X, 11/11 = 1,

I[ u(y)/(y) dy I<; [ Iu(y)11/(y)1 dy <; [ Iv(y )11/(y)\ dy

= I[ v(Y)I/(Y)lsgn(v(Y»dY !.

Now by (5.39), III sgn(v) E X and by the monotonicity of the norm,
IIII1 sgn(v)11 = Ilfll = 1. Thus

640/38/2-3
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~~f Iff(y) u(y) dy I~ ~~f Iff(y) v(y) dy I,
IIJlI~ 1 IIfll~ I

and the norm (5.40) is monotone. I

In the following we assume that X and the monotone norm in (5.38)
satisfy the assumptions of Lemma 5.2. Furthermore, we assume that the dual
norm 111·111 defined by (5.40) is in N(KT

), where K T (x, y) = K(y, x) is defined
on [c, d] X [a, b] and satisfy the assumptions of Theorem 3.1. All these
assumptions are satisfied by the LP-norms and the corresponding space
U[c, d], 1~p ~ 00, (p = (0), and by kernels K which are TP on
[a, b] X [c, d] and nondegenerate of order 0 in x on (a, b) and in yon (c, d)
([c, d) or (c, d]). Also the norms of form (2.17),

[

m ]l/q
Ilfll = ~o Ilfll~/ '

and their corresponding spaces

(5.41 )

X = {f Ifl[~. ~ IE LP/[l1i' l1i+ I]' i = 0,..., m}
"1"'/+1

with 1 ~PO""'Pm < 00, 1~ q ~ 00, and c = 110 < ... < 11m+ 1 = d, satisfy the
above assumptions, since the dual norms for these norms are [4]

[
m ]1/r

III gill = i~: Ilfll~/ ' (5.42)

with r- 1 + q - I = 1 and pi 1 + s;- I = 1, i = 1,... , m.
The norms (5.42) are in N(KT

) for kernels K(x,y) in CO.I([a, b] X [c, dJ)
which are TP and nondegenerate of order 0 in x on (a, b) (or la, b]) and of
order 1 in yon [c, d].

Under the above assumptions on K, x, and the norm II ·11, the Kolmogorov
n-width is obtained for the space L h.

THEOREM 5.7. Let h E L <Xl [a, b] satisfy (3.34), let X and the norms 11-11
and 111·/11 be as in Lemma 5.2, and let K T and 111·111 satisfy the assumptions of
Theorem 3.1. Then

(5.43)

where lfI~. = f: K(x, .) h~.(x) dx, ~* E sn la, b], is a perfect spline of
minimum norm 111·111. An optimal space for (5.45) is the subspace K(l1*),
where c ~ I1t ~ ... ~ 17: ~ d are the zeros oflfl~..
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Proof For a given X neLk, let h., x E Sm, m ~ n, be an orthogonal
function to X n , guaranteed by the Hobby-Rice theorem. Then for ~ E Kx

}~!.II~-ull •.h~ If ~(x)h.(x)dx 1= 1((K(X,y)f(y)h.(X)dXdyl

with fE X, Ilf\1 ~ I. Thus

sup inf II~-ull •.h~ sup 1('I'.(Y)f(Y)dyl=III'I'.III>III'I'~.III,
</IEK x UEXn !EX

11111= 1

where '1'. = f~ K(x, .) h.(x) dx.
We complete the proof by demonstrating that

sup inf II ~ - u 11 •• h~ III 'I'~,III·
</IEKx UEK('!')

Let ~ = f~ K(·,y)f(y) dy E Kx and let

E= la Ila(x)l=h(x),xE(a,b),J uadx=O'UEK(l1*)~'

By the dual characterization of best approximations,

(5.44 )

inf 11~-ulll,h= sup \(' ~(x)a(x)dxl
UEK('!') oEI )a

= ~~~ Itr[K(x,y) a(x) dx]f(y) dy I, (5.45)

while by the definition of E, any function of the form 'I' = f~ K(x, .) a(x) dx
with a E E vanishes at c ~ ",t ~ .,. ~ ",: ~ d. Hence by (5.7) of Corollary
5.1 and definition (5.40) of the dual norm,

III'I'~,III > IIII: K(x,y) a(x) dx III> It I: K(x,y) a(x)f(y) dx dy I
for any a E E and fE X, Ilfll = I. Therefore

~~~ 1(S:K(x,y)a(x)f(Y)dxdyl~III'I'~'"I, fEX, Ilfll=l,

which together with (5.45) proves (5.44). •
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For the setup of the last theorem, we can obtain the Gelfand n-width not
for F = C* [a, b j but only for the set of linear functionals

L{(a, b)} == {IE C*[a,b] 11(f)=!(x),xE (a, b)}. (5.46)

This result is derived from the stronger property (3.22) of perfect splines of
minimum norm as is the case for the Kolmogorov n-width of subsection 5.2.
If we assume further that Result E holds for the dual norm 111,111, then the
Gelfand n-width for C* [a, b j is obtained from the minimality of the perfect
spline l/I~•.

THEOREM 5.8. Let K, h, X, the norms 1/·11 and III ·11/, and l/I~' be as in
Theorem 5.7. Then

with an optimal space

Lt. = {flf(~n = 0, i = 1,..., n}.

Proof ForxESn[a,bjlet

L;= {glg(x;)=o, i= l,...,n}

and

(5.47)

(5.48)

M. = /lEXIIIfII";:; 1,

Now ~ E K x (\ L; if and only
therefore

( f(y) u(y) dy = 0, u E K [x j (.

if ~=rK(·,y)f(y)dy with fEM.,
c

and

sup 11~III.h = sup lit K(X,y)!(y)dyll
<l>EKXnLi [EM. C I.h

~ sup It [Jd K(x,y)f(y)dyJ h.(x)dx I
[EM. a C

= SUp I( l/I.(y)f(y) dy I= inf IlllfI. - u III,
[EM. Jc UEK(.j

where the last equality is the standard dual characterization of best approx­
imations. Thus by (3.22) of Theorem 3.2

sup II ~ III,h ~ inf IlllfI. - u III ~ Il/lfI~.III· (5.49)
<l>EKXnLi uEKr~
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To obtain the upper bound 1111fI~. III for the space Lt., observe that by
Theorem 3.2 and Corollary 5.1

inf 1111fI- u III ~ 1111fI~·III,
UEK[~'l

for any IfI = f~ K(x, .) a(x) dx with la(x)1 ~ hex), x E la, b]. Hence for any
la(x)1 = hex), x E la, b],

1111fI~·1I1 ~ t~~.1( [( K(x,y)f(y) dy Ja(x) dx I,
and therefore

1\11fI~·111 ~ sup litK(x,y)f(y)dy II = sup.l 11~1I1,h' I
tEM~' C l,h <l>EKXnL~.

THEOREM 5.9. Let K, h, X, the norms 11·11 and 111·111, and 1fI~. be as in
Theorem 5.7, and let the dual norm 111·111 be strictly convex. Then

(5.50)

and the optimal space is L t. (defined in (5.48)).

Proof For L nE (C*[a, b]Y define Un = {IK(·,y) liE Lnl and

By Result E there exists x E sn[a, b] such that

1111fI.111= inf 1IIIfIx-ulll·
UEUn

Thus we obtain

sup 11~111,h = sup litK(x,y)f(y) dYI11,h
<l>EKXnd, tEM. c

~ tEUi
n

IJ: [r K(x, y)f(y) dy1h.(x) dx \

= sup I ( lfI.(y)f(y)dy 1= inf 1I11f1.- ulil
tEM. 'C UEU.

= 11I1fI.111 ~ 1111fI~·III,

(5.52)

where the last equalities are concluded from the dual characterization of best
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approximations and from (5.51 )-(5.52). The optimality of L~. follows from
the last theorem. I

The norms (5.41) with 1 < q,po""'Pm < 00 and their dual norms (5.42)
satisfy the assumptions of Theorem 5.9 for K E CO.I(la, b1X [c, d]) which is
TP and nondegenerate of order 0 in x on (a, b) and of order 1 in y on [c, d].
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